Indian Journal of Urology Users online:9856  
Home Current Issue Ahead of print Editorial Board Archives Symposia Guidelines Subscriptions Login 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size

Year : 2010  |  Volume : 26  |  Issue : 3  |  Page : 410-417

Current and future technology for minimally invasive ablation of renal cell carcinoma

Department of Urology, University of Minnesota, USA

Date of Web Publication1-Oct-2010

Correspondence Address:
J Kyle Anderson
MMC 349, 420 Delaware St. S.E., Minneapolis, MN 55455
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0970-1591.70584

Rights and Permissions


Purpose of Review : To provide an overview of the technologic advancements in the field of ablative therapy, focusing on the treatment of renal neoplasms.
Materials and Methods : A MEDLINE search was performed using each specific ablative technique name as the search term. Articles written in the English language were selected for review. In cases of multiple reports by a single institution, the most recent report was utilized. Pertinent articles specific to the technologic advancement in ablative therapy were selected for review.
Recent Findings : Intermediate-term oncologic outcomes of radiofrequency ablation (RFA) and cryoablation (CA) for the treatment of small renal masses are encouraging. For thermal therapies, molecular adjuvants to enhance cellular kill and local control have been developed. Improvements in microwave technology have allowed for reductions in antenna size and increases in ablation size. Laparoscopic high-intensity focused ultrasound (HIFU) probes have been developed to overcome the limitations of transcutaneous energy delivery, but HIFU remains experimental for the treatment of renal lesions. Irreversible electroporation (IRE), a novel nonthermal ablative technique, is currently undergoing clinical investigation in human subjects. Histotripsy causes mechanical destruction of targeted tissue and shows promise in treating renal and prostate pathology.
Summary : Ablative techniques are commonly utilized in the primary treatment of urologic malignancies. The purpose of this review is to discuss technologic advances in ablative therapies with emphasis on the treatment of renal masses. RFA and CA show acceptable intermediate-term efficacy and technical refinement continues. Emerging technologies, including microwave thermotherapy, IRE, HIFU and histotripsy, are described with emphasis on the mechanism of cellular kill, energy delivery, and stage in clinical development.

Keywords: Kidney, kidney neoplasm, kidney cancer

How to cite this article:
Duffey BG, Anderson J K. Current and future technology for minimally invasive ablation of renal cell carcinoma. Indian J Urol 2010;26:410-7

How to cite this URL:
Duffey BG, Anderson J K. Current and future technology for minimally invasive ablation of renal cell carcinoma. Indian J Urol [serial online] 2010 [cited 2022 Jul 3];26:410-7. Available from:

   Introduction Top

Ablative technologies have been embraced as primary treatment options for several malignancies, including prostate, testicular, hepatic, lung, and renal cancer. Increased utilization of computed tomography imaging has accompanied a rise in the diagnosis of renal masses, many smaller than 4 cm. [1],[2] A substantial proportion of these tumors, that is, 20-30%, will be benign. [3],[4] Partial nephrectomy, the gold-standard treatment for small renal masses (SRMs), is associated with significant morbidity and may not be an acceptable treatment for every patient, especially those with significant comorbidities. Ablative therapies have been developed as an attempt to provide acceptable oncologic control, while reducing the morbidity associated with partial nephrectomy.

The purpose of this review is to discuss the significant technologic and clinical developments in the field of ablative therapy for the treatment of SRMs. Cryoablation (CA) and radiofrequency ablation (RFA), the most common ablative techniques used for the ablation of SRMs, have been reviewed with emphasis on clinical outcomes and the use of molecular adjuvants. Newer ablative therapies are described in this article, with focus on the energy type, generator, delivery system, and stage in clinical development. The sources utilized in this review were identified during a MEDLINE database review. The name of each ablative technique was used as the search term. Pertinent articles focusing on technologic development and published in English were selected for review. In the case of multiple publications from the same institution, the most recent publication is presented unless there is significant clinical relevance to older publications.

   Radiofrequency Ablation Top

RFA causes hyperthermic destruction of targeted tissue. RFA probes are designed to deliver a continuous high-frequency electrical current to the surrounding tissue through the noninsulated distal portion of an electrode. This energy causes resistive friction in the surrounding tissues that subsequently generates heat. [5],[6] The effects of temperatures exceeding 50ºC are multiple and varied, causing chromosomal alterations, protein denaturation, damaging cellular membranes and associated transport proteins, and microvascular and arteriolar occlusion.[7],[8] Temperatures >100-105ºC result in tissue boiling, vaporization, and carbonization, resulting in periprobe char that decreases effective energy transmission and may result in suboptimal ablation. [9] Although general consensus has held that temperatures should reach 50-100ºC throughout the targeted volume, successful ablation depends not only on the temperature attained, but also on the duration that temperature is held. Time-temperature points resulting in >99% cell death in an in vitro renal cell study were 55ºC for 30 min, 60ºC for 10 min, 65ºC for 8 min, and 70ºC for 1 min. [10] In vivo the temperature necessary to cause cell death may further be lowered by tissue ischemia, pH changes, and inflammatory response.

Radiofrequency energy is delivered via probes powered by either temperature- or impedance-based generators. Temperature-based systems (RITA 1500X, Angiodynamics, Queensbury, NY) deliver energy until a specific temperature has been reached for a predetermined period of time. Target temperatures are limited to 100-105ºC to avoid tissue char and incomplete ablation. Impedance-based systems (RF 3000, Boston Scientific, Natick, MA, and Cool Tip, ValleyLab, Boulder, CO) conclude treatment when the periprobe tissue reaches a predefined impedance signifying tissue desiccation such that electrical current passage is impaired.

A wide variety of RFA probes are available and the probe selected depends on the surgical approach, lesion size, location, and imaging system utilized. Single-needle probes are well suited for treating small lesions or may be grouped into a cluster for the treatment of larger lesions. Multitined probes are useful in treating larger lesions, deploying several electrodes from the distal tip reaching diameters up to 7 cm. Bipolar devices (Habib 4X, Angiodynamics, Queensbury, NY) are available for both open and laparoscopic applications and have been utilized to create an avascular tissue plane facilitating clampless laparoscopic and robotic-assisted partial nephrectomy. [11],[12] Multiple-electrodes ablation systems (Cool Tip, ValleyLab, Boulder, CO), designed to create larger consistent lesions, utilize a generator and switching controller to drive up to 3 independent electrodes, switching among them when impedance increases 30 Ω greater than baseline or after an interval of 30 s, whichever occurs first.[13]

As clinical experience with RFA has grown, short- and intermediate-term results of SRMs treated with RFA have been published and are encouraging. Contemporary oncologic outcomes from high-volume centers report recurrence-free rates of 90-96.8 % following RFA in patients with mean ages and tumor volumes of 63.6-70.4 years and 2.0-3.2 cm, respectively. [14],[15],[16],[17] Two recent meta-analyses evaluating the treatment of SRMs reported slightly higher rates of local recurrence following RFA (11.7-12.9%) compared with partial nephrectomy (2.6%) and CA (4.6-5.2%), but observed a low incidence of metastatic disease (0.9-2.5%), rates similar to CA, partial nephrectomy, and surveillance. [4],[18] Additionally, univariate and multivariate analyses suggest that RFA carries a greater risk of local recurrence and the need for retreatment compared with the other management options. [4],[18] When interpreting the outcomes of RFA, it is important to note that definitions of local recurrence and treatment failure are not standardized, making it difficult to differentiate an incomplete ablation (which could be treated by repeat ablation and has little effect on prognosis) and a true local recurrence. Additionally, a percutaneous approach has been most frequently utilized for RFA and patients tend to be older, suggesting a significant selection bias. A percutaneous approach offers the potential of limited morbidity, especially in patients with significant coexisting diseases. In select patients, the decreased risk associated with percutaneous RFA may outweigh the potential morbidity of a more invasive treatment (ie, laparoscopic-assisted ablation) making this a viable option. Overall, RFA is an oncologically sound approach for the treatment of SRMs, however, superior local control rates seen with CA (more frequently delivered via a laparoscopic approach) suggest that improvements in technique may improve outcomes. Recent work has suggested that percutaneous RFA under general anesthesia with contrast-enhanced imaging (compared with conscious sedation with varied imaging modalities) or laparoscopic-guided probe placement with deployment of multiple thermosensors may offer improved probe placement and local control; however, these suppositions have not been evaluated in randomized studies.[19],[20] In select patients, both CA and RFA are clinically proven techniques with acceptable oncologic efficacy and are useful options for the treatment of SRMs.

Histologic examination of SRMs treated with RFA indicate that local failure results from "skip" lesions within the tumor and inadequate treatment at the periphery. [21],[22] Assuming adequate probe placement, these failures probably arise from either heterogenous tumor tissue characteristics leading to unpredictable current flow ("skip" lesions) or peritumor vasculature creating a heat sink effect (temperatures at margin not sufficient for cellular kill). The common strategies to prevent these negative outcomes have included extending the treatment zone 5-10 mm past the tumor margin, performing multiple ablations of the same tumor by varying the probe angle or rotating the array in the case of multitined probes, and avoiding ablative treatment in tumors in close proximity to the renal hilum. More recently, the administration of specific drugs, functioning as RFA molecular adjuvants, has been evaluated in an effort to increase treatment efficacy, decrease the rates of local failure, decrease the time and extent of treatment, and spare healthy adjacent tissue. In one study, liposomal-packaged chemotherapeutics administered with RFA were found to increase ablation volumes 39-61% compared with RFA alone. [23] Adjuvant arsenic trioxide prior to RFA in a VX2 rabbit model resulted in reduced tumor blood flow and increased ablation volumes by 83% compared with controls, effects probably caused by apoptosis, vascular shutdown, and thermal sensitizing effects. [24] Of the agents evaluated thus far, the most clinically relevant is probably sorafenib. This vascular endothelial growth factor and platelet-derived growth factor receptor inhibitor, and anti-RAF kinase agent decreased microvascular density and increased ablation size from 6.7 ± 0.7 mm to 11.1 ± 0.3 mm (P < 0.01) compared with control animals. [25] Recently, sorafenib was used to reduce tumor size from 3.7 to 1.7 cm in a single functioning kidney facilitating RFA, resulting in successful local control after repeat ablation. [26] Molecular adjuvant administration may improve local control and spare healthy adjacent tissue by increasing the susceptibility of the tumor to thermal injury; however, further research is necessary prior to clinical application.

   Cryoablation Top

CA is a thermal ablative technique designed to remove heat from tissue, resulting in temperatures ≤ −40ºC and ice ball formation encompassing the targeted tissue with subsequent hypothermic stress and cellular death. [27] During CA, cellular injury occurs via several mechanisms, which can be broadly classified as cellular, vascular, or immunologic. Direct cellular injury occurs from the formation of ice in the extracellular and intracellular space. As ice forms in the extracellular space, osmolarity perturbations cause an efflux of water into the extracellular space leading to intracellular hypertonicity, altered pH, and protein denaturation. Additionally, ice formation causes mechanical disruption of cellular membranes. Vascular injury occurs as ice crystals propagate along the walls of blood vessels causing mechanical disruption, microvascular shutdown, and ischemia. Delayed cellular death may be mediated via immunologic mechanisms stimulated by the release of tumor antigens or apoptosis from cells at the periphery of the cryolesion (temperatures > −40ºC). [28],[29]

Modern renal CA devices utilize the rapid cooling of argon gas as it passes through specially constructed cryoprobes (the Joule-Thompson effect). The probes are capable of creating ice balls of widely varied sizes (31 × 36 mm to 45 × 64 mm); however, the −40ºC isotherm is generally quite smaller (11 × 19 mm to 22 × 44 mm). CA probe diameters range from 1.2 to 3.8 mm and are available in various lengths, configurations, and some offer magnetic resonance imaging (MRI) compatibility. Galil Medical (Yokneam, Israel) and Endocare (Irvine, California, USA) currently manufacture CA systems designed for renal ablation. Surgical approaches to renal CA have included open, percutaneous, laparoscopic, natural orifice translumenal endoscopic surgery, and laparoendoscopic single site. [30],[31]

Intermediate oncologic outcomes indicate that CA is a curative option for the treatment of SRMs in patients unfit or unwilling to undergo partial nephrectomy. Larger series with follow-up ranging from 9 to 36 months report excellent local control (95-100%) and cancer-specific survival (95-100%) in patients with single sporadic renal masses. [32],[33],[34],[35],[36],[37] Aron et al. recently reported the oncologic outcomes of 88 patients treated with laparoscopic CA and a minimum follow-up of 5 years. [38] In 82 patients with a sporadic single renal mass followed for a mean of 83 months (range 60-120 months) 5-year overall survival, cancer-specific survival, and recurrence-free survival was 83%, 95%, and 78%, respectively. Additionally, the estimated 10-year Kaplan-Meier overall survival, cancer-specific survival, and recurrence-free survival was 57%, 88%, and 51%, respectively. Kunlke's meta-analysis evaluating nephron sparing techniques in the treatment of SRMs found that CA carries a higher risk of local recurrence (RR = 7.45) compared with partial nephrectomy, but no difference in the development of metastatic disease. [4] When comparing CA and RFA, CA was associated with lower incidence of local recurrence (5.2% vs 12.9%, P < 0.001) and need for retreatment (1.3% vs 8.5%, P < 0.001), but similar rates of metastatic disease (1% vs 2.5%, P = 0.06). [18] Lesions treated with CA in this meta-analysis were approached laparoscopically most often (65%), whereas 94% of RFA treatments were delivered percutaneously, raising the question whether the surgical approach alters the need for retreatment and possibly the oncologic outcome. A recent single institution retrospective analysis of the efficacy and complications of laparoscopic CA for larger renal masses found no difference in short-term local control in tumors < 3.0 cm (n = 30, mean tumor size = 1.8 cm, range 0.7-3.0 cm) vs tumors > 3.0 cm (n = 21, mean tumor size = 4.0 cm, range 3.1-7.5 cm); however, the treatment of tumors > 3.0 cm was accompanied by more complications (62% vs 0%), need for blood transfusion (38% vs 0%), and longer hospitalization (3.52 vs 1.65 days). [34]

As previously mentioned, cryoinjury is mediated by vascular, immunologic, and direct cellular effects. Although instant cell death is achieved within the −40°C isotherm, cell death at the edges of the iceball, where temperatures range from −40 to −0.5ºC, is uncertain. Molecular adjuvants of CA have been administered in an effort to augment the vascular, immunologic, and direct cellular effects of cryoinjury, to make tissue at the ice ball edge more susceptible to injury, and to potentially spare normal healthy adjacent tissue. Thermophysical adjuvants, such as antifreeze proteins, salts, and some amino acids modify the crystalline ice during freezing, causing additional direct cell injury due to the presence of ice crystals. These adjuvants have been utilized in human and rat prostate models, but clinical success is limited by the need to successfully target specific tissues with therapeutic doses of adjuvant, while minimizing toxicity to other tissues. [39],[40] Coadministration of chemotherapeutic agents with CA has been explored in several models as an alternative method of enhancing the direct cellular effects of cryoinjury. Multiple in vitro studies have shown the ability of chemotherapeutics, such as 5-fluorouracil, cisplatin, and bleomycin to augment cell death at milder freezing conditions (ie, between −5 and −15ºC); however, no study to date has shown augmentation of cell kill to the edge of the iceball. [41],[42],[43],[44],[45] Although this approach appears to be promising, most experimental work has been in vitro, and more in vivo evidence is needed to address the issues of exact mechanism of injury, dose, timing, and drug selection. [27] Exacerbation of the adverse vascular effects of CA has been rigorously studied, but only TNF-α has been shown to augment cell death up to the edge of the ice ball. TNF-α is associated with multiple vascular and immunologic events, including endothelial cell apoptosis, increased procoagulant activity, decreased anticoagulant activity, increased inflammatory cell response and the production of other cytokines. [46],[47],[48] The major barrier to clinical use of TNF-α has been the significant side effects associated with systemic administration of doses required to achieve a local effect. Novel delivery methods are currently being investigated and in a recent study, TNF-α was delivered via a gold nanoparticle, which augmented the ablative process and greatly reduced systemic side effects. [49]

   Microwave Top

Microwaves lie on the electromagnetic spectrum between infrared and radiowaves with frequencies ranging from 900 to 2450 MHz. Microwaves ablate targeted tissue by agitating water molecules, producing friction and heat, ultimately inducing cell death via coagulative necrosis. [50] The benefits of microwave thermotherapy include high intratumoral temperature (approaching 150°C), reliance on electromagnetic energy that does not require conduction through tissue eliminating the need for grounding pads and minimizing the effects of tissue desiccation and char, rapid heat generation making it less susceptible to heat sink from large vascular structures, and multiple antennas may be utilized simultaneously. [51],[52] The drawbacks of microwave thermotherapy, including limited zone of ablation, large antenna size, significant retrograde heating of the delivery antenna, and the need for a microwave generator for each antenna utilized have blunted its widespread acceptance.

Refinements in antenna design have focused on reducing size, maximizing energy delivery to the target tissue, and minimizing retrograde heat propagation along the antenna, and thus reducing the risk of cutaneous burns. Changes in generator design and power distribution have permitted multiple antennas to be powered by a single generator.

Clark et al. ablated 10 renal masses using 13-gauge saline cooled antennas with improved material and structural properties designed to improve energy deposition into the tissue. [52] Single-probe configuration achieved a mean ablation size of 4.1 × 2.7 × 2.2 cm, whereas a 3-probe configuration averaged 5.7 × 4.7 × 3.8 cm. The only cutaneous complication was a grade I skin burn at an antenna, which was not connected to the cooling system. This system is no longer available and has been replaced by the Evident™ MW Ablation System (ValleyLab, Boulder, CO). Probes with the Evident™ system are designed for either percutaneous or open ablative use. Percutaneous antennas are 13-gauge and internally cooled with circulated saline, whereas the antennas used during open ablation are 11-gauge and have a copper choke to minimize back heating. The Evident™ MW ablation system has been currently approved by the US Food and Drug Administration for use in the hepatic tumors with approval for renal neoplasms underway.

Liang et al. reported intermediate-term results of percutaneous ultrasound-guided microwave ablation of 12 renal masses < 4 cm showing complete ablation in a single session without evidence of tumor regrowth at a mean of 10.8 months. [53] They utilized the KY2000 MW ablation system (Kangyou Medical Instruments, Nanjing, People's Republic of China). The generator can produce up to 100 W and drive 2 antennas simultaneously. The antennas are 15-gauge, polytetrafluoroethylene-coated, and saline cooled. This system is also equipped with a thermal monitoring system that can measure temperature during ablation.

Brace et al. further reduced antenna size by constructing a triaxial 17-guage antenna. [51] The size reduction and changes in design both reduce the local traumatic effects of antenna insertion and enables tuning of the antenna for a specific tissue type and frequency by adjusting the active length and insertion depth. [54] A 2.45-GHz generator (Cober Muegge, Norwalk, CT) capable of continuously supplying 300 W may be coupled with a 2- or 3-way power splitter (SM Electronics, Fairview, TX) permitting simultaneous activation of up to three 17-gauge triaxial antennas with a single generator.[55] A comparison of microwave (single- vs multiple triaxial antennas) vs radiofrequency (single- vs 3-electrode array) in a canine model revealed 3-electrode radiofrequency and single-antenna microwave ablation zones were significantly larger than single-electrode RF zones. Although there were no differences between single microwave and multiple RF ablation zones, tissue temperatures were higher during microwave ablation (maximum temperature of 123 vs 100ºC for RF). [55]

   High-Intensity Focused Ultrasound Top

High-intensity focused ultrasound (HIFU) focuses ultrasound waves that propagate through normal tissue and converge on targeted tissue. At the focal zone, ultrasound energy is converted to heat resulting in protein denaturation and coagulative necrosis. [56] Focal zone temperatures during HIFU quickly exceed 80ºC during treatment. [57] To create a clearly demarcated lesion, the power density should exceed 100 W/cm, a value sufficient to produce temperatures ≥ 65ºC within a pulse duration of <5 s. [56]

Extracorporeal HIFU systems currently employed for treatment of SRMs utilize 0.6-1.8 MHz piezoelectric transducers driven by generators capable of delivering up to 2000 W. [58] When using a 1 MHz transducer, ultrasonic energy is typically delivered in at least 15-s intervals with a pulse duration of 4-6 s. [56],[59] The focal zone size varies with transducer frequency and focal length, but generally ranges from 3-4 mm × 12-32 mm. [56],[59],[60] In the Storz Investigational HIFU device (Storz, Germany) ultrasound waves delivered by a hand-held or mechanically controlled transducer are coupled to the patient's body through a polyurethane cushion filled with degassed water. In the Chongquing "HAIFU" device (Chongquing, China), the patient lies on a treatment table and the transducer is located within a basin filled with degassed water to couple the ultrasonic energy to the patient. In both the systems, the treated area is monitored with a confocally mounted 3.5 MHz B-mode ultrasound transducer.

To date, studies evaluating transcutaneous renal HIFU have been disappointing. Targeted renal tissue is inconsistently ablated and the ablated volume frequently is smaller than the planned treatment area. [56],[59],[61] These unsatisfactory results are mainly due to complex acoustical interfaces surrounding the kidney (ie, ribs and bowel) and mobility of the kidney. Target movement during energy delivery may decrease the time that ultrasonic energy is delivered to a specific area resulting in failure to reach time-temperature combinations necessary for cell death. Difficulties with target motion could theoretically be solved using multichannel focused ultrasonic systems and multiprobe systems of small-aperture confocal HIFU transducers. These solutions have been evaluated experimentally, but have not undergone clinical evaluation. Additionally, there is a lack of real-time monitoring of the HIFU process, as standard thermocouples interfere with ultrasonic energy and cannot be utilized, and MRI thermography requires a near motionless target.

Laparoscopic HIFU was developed to circumvent the difficulties associated with the transcutaneous approach. Paterson et al. evaluated laparoscopic renal HIFU using a modified transducer (frequency 4 MHz, focal length 30 mm) and probe (18 × 30 mm) (Sonablate 200, Focus Surgery, Indianapolis, IN). The average treatment duration was 18.3 min and the ablated lesions matched the planned lesion size (21 × 17 × 11 mm and 21 × 17 × 10 mm, respectively).[62] A phase I study in human subjects using a modified laparoscopic probe (Sonatherm, Misonix Inc, Farmingdale, NY) suggested that laparoscopic renal HIFU is feasible and allows sufficient tumor destruction. [63] Performed in a "continuous ON" mode under computer control, mean ablated size was 10.2 cm 3 with a mean ablation time of 19 min. Of 7 tumors ablated and removed after HIFU, 4 showed complete ablation of the entire tumor. Two tumors had a 1- to 3-mm rim of viable tissue immediately adjacent to where the HIFU probe was placed, indicating the need to keep the transducer > 7 mm away from the tumor. One tumor showed a central area with about 20% vital tissue.

Currently, HIFU of renal tumors must be considered experimental. Transcutaneous HIFU does not currently permit successful tumor destruction and is not considered an alternative to surgical excision. Laparoscopic HIFU has the potential to overcome the limitations associated with transcutaneous treatment, but further studies evaluating oncologic efficacy are necessary.

   Irreversible Electroporation Top

Irreversible electroporation (IRE) is a newly developed nonthermal tissue ablation technique in which intense short-duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane.[64],[65] Depending of the resultant transmembrane electrical potential, the application of an electrical pulse can (1) have no effect on the cell; (2) reversibly open cellular membranes after which the cells survive; or (3) irreversibly open the cell membrane leading to cell death. Although the exact mechanism of IRE is unknown, it is thought that when the potential drop across the membrane exceeds approximately 1 V, permanent structural rearrangement of the lipid bilayer occurs, creating aqueous pathways or pores for ions and macromolecules to pass through. [66] The irreversible permeabilization of cell membrane leads to changes in cell homeostasis and cell death.

Because of its unique mechanism of ablation, IRE has several advantages when compared with thermal-based ablative techniques. Because IRE does not rely on thermal energy, the targeted tissues adjacent to large vascular structures are not affected by a "heat sink" effect. [67] IRE destroys the cellular components of a tissue, but does not affect the underlying collagen network of tissue, thereby preserving the basic tissue structure. Indeed, deliberate treatment of the rectum and neurovascular bundles in a canine prostate protocol showed sparing of the neurovascular bundles and no evidence of rectal injury or fistula formation. [68] Additionally, sparing of the tissue scaffolding and arteriolar vasculature may facilitate healing and rapid radiologic resolution. Treatment times with IRE are shorter than conventional thermal ablative techniques (8.4 ± 1.8 min) and generate lesions of comparative size (3.2 × 2.5 × 3.9 cm). Lastly, tissues treated with IRE have a sharp line of demarcation between ablated and nonablated areas, facilitating pathologic evaluation. [67],[68]

The energy required to accomplish IRE is delivered by 15 cm monopolar (18-gauge) or bipolar (16-gauge) electrodes. The distal 4 cm of each electrode is uninsulated. The electrodes are connected to a high voltage generator capable of delivering 1000-3000 V per pulse and controlled via a graphical user interface (Angiodynamics, Queensbury, NY). Prior to the procedure, the operator sets the desired pulse number, pulse duration, repetition rate, and voltage.

IRE can be performed as a real-time ultrasound-guided intervention as no hyperechoic gas is generated during ablation. Lee et al. reported that during IRE treatment, a spherical hypoechoic area of ablation is detected during and immediately after IRE in ultrasound images. [67] They speculate the hypoechogenicity is due to increased intra-/extracellular water molecules after opening of transmembrane pores by the high voltage of electroporation.

Preclinical studies in animal models have been performed to establish IRE safety profiles and dose responses. [64],[67],[68],[69],[70] An in vitro study conducted by Rubinsky et al. demonstrated a total of 90 pulses at 250 V/cm for 100 μs separated by 100 ms could completely ablate prostate cancer cells without inducing thermal injury. Initial studies in human subjects are currently underway in select centers in the United States.

   Histotripsy Top

Histotripsy is a new transcutaneous ablative technique under development by a multidisciplinary team at the University of Michigan. Much like HIFU, histotripsy is based on the propagation of ultrasound waves through tissues, energy focusing, and subsequent conversion of energy at the ablation site. However, histotripsy differs significantly from HIFU in the method of tissue ablation. HIFU produces a thermal effect and subsequent coagulative necrosis, whereas histotripsy induces nonthermal mechanical disruption of cells. During histotripsy when acoustical intensity exceeds 1500-2000 W/cm 2 rapid cycling from compression to rarefaction results in the formation of microbubbles in the tissue. These bubbles oscillate and violently collapse releasing tremendous amounts of energy that can fragment and subdivide tissue, resulting in cellular destruction. [71]

Histotripsy is performed by a system consisting of a high power transducer on a 3-axis computer-controlled positioning system. The piezocomposite transducer has a 145 mm diameter and 100 mm focal length, emitting ultrasound at 500-1000 kHz. [71] Pulse repetition rates range from 100 to 1000 Hz with a pulse duration of 5-20 μs and duty cycle of 0.2-0.5%. [72] The histotripsy system is acoustically coupled to the subject by a bath of degassed water. A hole in the center of the transducer permits a confocally aligned monitoring probe. Upon the initiation of energy delivery, a region of transient hyperechogenicity is visualized at the focal point probably representing a bubble cloud. [73] Electronic steering is used to direct the transducer focal point in a grid-like fashion across the targeted tissue.

Work has focused on the nature of ultrasound mechanical tissue fractionation, the effects of various acoustic parameters and the feasibility of transcutaneous treatment of normal animal renal and prostatic tissue. [71],[72],[73],[74] Histologic examination of lesions created by histotripsy show a thin, well-demarcated rim of intact cells with a transition zone of only several cells containing pyknotic nuclei surrounding the focal zone. The focal zone contains a liquefied homogenous slurry of cellular debris without evidence of intact cells. [72],[73] A recent work demonstrated the differential effects of histotripsy in a porcine renal model. [74] Targeted tissue in the cortex readily cavitates, whereas medullary tissue is more resistant (presumably due to increased fibrous elements in the tissue) and the collecting system is relatively spared.

Although still in the initial developmental stages, the unique characteristics of the energy delivered during histotripsy may make it well suited for clinical use in human subjects. Transcutaneous treatment is advantageous compared with other techniques that require percutaneous needle placement. Nonthermal ablative mechanisms obviate concerns for heat sink effects from large adjacent vessels. The low-duty cycle allows for real-time observation of the ablation process with diagnostic ultrasound between ultrasound pulses. [71] Transcutaneous ablation of renal tissue is challenging due to the difficulties with acoustic windows and constant lesion motion from respiration during treatment. Because histotripsy is nonthermal and has a low-duty cycle, it may be less susceptible to target motion than HIFU. Studies evaluating transabdominal histotripsy in a canine prostate model are encouraging and are paving the way for histotripsy in human subjects. Preliminary studies of the acoustic windows into the human pelvis have recently been performed to determine the feasibility of a transperineal transducer. [75]

   Conclusion Top

Ablative therapy, specifically RFA and CA, for the treatment of SRMs has produced encouraging intermediate term results. Further research on specific energy type, biologic effect, delivery system, and molecular adjuvants may improve oncologic results and broaden the indications for ablative therapy

   References Top

1.Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225-49.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]  
2.Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 2006;98:1331-4.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]  
3.Duchene DA, Lotan Y, Cadeddu JA, Sagalowsky AI, Koeneman KS. Histopathology of surgically managed renal tumors: analysis of a contemporary series. Urology 2003;62:827-30.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]  
4.Kunkle DA, Egleston BL, Uzzo RG. Excise, ablate or observe: the small renal mass dilemma-a meta-analysis and review. J Urol 2008;179:1227-33.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 2000;174:323-31.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Carraway WA, Raman JD, Cadeddu JA. Current status of renal radiofrequency ablation. Curr Opin Urol 2009;19:143-7.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]  
7.Coss RA, Linnemans WA. The effects of hyperthermia on the cytoskeleton: a review. Int J Hyperthermia 1996;12:173-96.  Back to cited text no. 7  [PUBMED]    
8.Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 2003;19:252-66.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol 1995;2:399-404.  Back to cited text no. 9  [PUBMED]    
10.Walsh LP, Anderson JK, Baker MR, Han B, Hsieh JT, Lotan Y, et al. In vitro assessment of the efficacy of thermal therapy in human renal cell carcinoma. Urology 2007;70:380-4.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]  
11.Nadler RB, Perry KT, Smith ND. Hybrid laparoscopic and robotic ultrasound-guided radiofrequency ablation-assisted clampless partial nephrectomy. Urology 2009;74:202-5.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]  
12.Asano T, Mizuguchi Y, Horiguchi A, Ito K, Sumitomo M, Kimura F, et al. Retroperitoneoscopic partial nephrectomy using radiofrequency coagulation for small renal tumors. Urology 2007;70:869-72.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Laeseke PF, Sampson LA, Frey TM, Mukherjee R, Winter TC 3rd, Lee FT Jr, et al. Multiple-electrode radiofrequency ablation: comparison with a conventional cluster electrode in an in vivo porcine kidney model. J Vasc Interv Radiol 2007;18:1005-10.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]  
14.Gervais DA, Arellano RS, McGovern FJ, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 2, Lessons learned with ablation of 100 tumors. AJR Am J Roentgenol 2005;185:72-80.  Back to cited text no. 14  [PUBMED]  [FULLTEXT]  
15.Zagoria RJ, Traver MA, Werle DM, Perini M, Hayasaka S, Clark PE. Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR Am J Roentgenol 2007;189:429-36.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]  
16.Levinson AW, Su LM, Agarwal D, Sroka M, Jarrett TW, Kavoussi LR, et al. Long-term oncological and overall outcomes of percutaneous radio frequency ablation in high risk surgical patients with a solitary small renal mass. J Urol 2008;180:499-504.   Back to cited text no. 16  [PUBMED]  [FULLTEXT]  
17.Park S, Anderson JK, Matsumoto ED, Lotan Y, Josephs S, Cadeddu JA. Radiofrequency ablation of renal tumors: intermediate-term results. J Endourol 2006;20:569-73.  Back to cited text no. 17  [PUBMED]  [FULLTEXT]  
18.Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 2008;113:2671-80.  Back to cited text no. 18  [PUBMED]  [FULLTEXT]  
19.Bird VG, Carey RI, Ayyathurai R, Bird VY. Management of renal masses with laparoscopic-guided radiofrequency ablation versus laparoscopic partial nephrectomy. J Endourol 2009;23:81-8.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]  
20.Gupta A, Raman JD, Leveillee RJ, Wingo MS, Zeltser IS, Lotan Y, et al. General anesthesia and contrast-enhanced computed tomography to optimize renal percutaneous radiofrequency ablation: multi-institutional intermediate-term results. J Endourol 2009;23:1099-105.  Back to cited text no. 20  [PUBMED]  [FULLTEXT]  
21.Klingler HC, Marberger M, Mauermann J, Remzi M, Susani M. 'Skipping' is still a problem with radiofrequency ablation of small renal tumours. BJU Int 2007;99:998-1001.  Back to cited text no. 21  [PUBMED]  [FULLTEXT]  
22.Rendon RA, Kachura JR, Sweet JM, Gertner MR, Sherar MD, Robinette M, et al. The uncertainty of radio frequency treatment of renal cell carcinoma: findings at immediate and delayed nephrectomy. J Urol 2002;167:1587-92.  Back to cited text no. 22  [PUBMED]  [FULLTEXT]  
23.Ahmed M, Lukyanov AN, Torchilin V, Tournier H, Schneider AN, Goldberg SN. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol 2005;16:1365-71.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]  
24.Hines-Peralta A, Sukhatme V, Regan M, Signoretti S, Liu ZJ, Goldberg SN. Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models. Radiology 2006;240:82-9.  Back to cited text no. 24  [PUBMED]  [FULLTEXT]  
25.Hakime A, Hines-Peralta A, Peddi H, Atkins MB, Sukhatme VP, Signoretti S, et al. Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice. Radiology 2007;244:464-70.  Back to cited text no. 25      
26.Grenier N, Douws C, Perot V, Ferriere JM, Ravaud A. Combined radiofrequency ablation and antiangiogenic drug for the treatment of recurrent renal tumor. Urology 2009;73:928.  Back to cited text no. 26      
27.Goel R, Anderson K, Slaton J, Schmidlin F, Vercellotti G, Belcher J, et al. Adjuvant approaches to enhance cryosurgery. J Biomech Eng 2009;131:074003.  Back to cited text no. 27  [PUBMED]    
28.Bischof JC, Coad JE, Hoffmann NE, Roberts KR. In vivo Is apoptosis an important mechanism of cryoinjury? Cryo Letters 2002;23:277-8.  Back to cited text no. 28  [PUBMED]  [FULLTEXT]  
29.Steinbach JP, Weissenberger J, Aguzzi A. Distinct phases of cryogenic tissue damage in the cerebral cortex of wild-type and c-fos deficient mice. Neuropathol Appl Neurobiol 1999;25:468-80.  Back to cited text no. 29  [PUBMED]  [FULLTEXT]  
30.Crouzet S, Haber GP, Kamoi K, Berger A, Brethauer S, Gatmaitan P, et al. Natural orifice translumenal endoscopic surgery (NOTES) renal cryoablation in a porcine model. BJU Int 2008;102:1715-8.  Back to cited text no. 30  [PUBMED]  [FULLTEXT]  
31.Goel RK, Kaouk JH. Single port access renal cryoablation (SPARC): a new approach. Eur Urol 2008;53:1204-9.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]  
32.Wyler SF, Sulser T, Ruszat R, Weltzien B, Forster TH, Provenzano M, et al. Intermediate-term results of retroperitoneoscopy-assisted cryotherapy for small renal tumours using multiple ultrathin cryoprobes. Eur Urol 2007;51:971-9.  Back to cited text no. 32  [PUBMED]  [FULLTEXT]  
33.Gill IS, Remer EM, Hasan WA, Strzempkowski B, Spaliviero M, Steinberg AP, et al. Renal cryoablation: outcome at 3 years. J Urol 2005;173:1903-7.  Back to cited text no. 33  [PUBMED]  [FULLTEXT]  
34.Lehman DS, Hruby GW, Phillips CK, McKiernan JM, Benson MC, Landman J. First Prize (tie): Laparoscopic renal cryoablation: efficacy and complications for larger renal masses. J Endourol 2008;22:1123-7.  Back to cited text no. 34  [PUBMED]  [FULLTEXT]  
35.Atwell TD, Farrell MA, Leibovich BC, Callstrom MR, Chow GK, Blute ML, et al. Percutaneous renal cryoablation: experience treating 115 tumors. J Urol 2008;179:2136-40.  Back to cited text no. 35  [PUBMED]  [FULLTEXT]  
36.Caviezel A, Terraz S, Schmidlin F, Becker C, Iselin CE. Percutaneous cryoablation of small kidney tumours under magnetic resonance imaging guidance: medium-term follow-up. Scand J Urol Nephrol 2008;42:412-6.  Back to cited text no. 36  [PUBMED]  [FULLTEXT]  
37.Weld KJ, Figenshau RS, Venkatesh R, Bhayani SB, Ames CD, Clayman RV, et al. Laparoscopic cryoablation for small renal masses: three-year follow-up. Urology 2007;69:448-51.  Back to cited text no. 37  [PUBMED]  [FULLTEXT]  
38.Aron M, Kamoi K, Haber GP, Desai MM, Canes D, Kaouk JH, et al. Laparoscopic renal cryoablation: long-term oncologic outcomes with minimum 5-year follow-up. J Urol 2008;179:209-10.   Back to cited text no. 38      
39.Pham L, Dahiya R, Rubinsky B. An In vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology 1999;38:169-75.  Back to cited text no. 39  [PUBMED]  [FULLTEXT]  
40.Muldrew K, Rewcastle J, Donnelly BJ, Saliken JC, Liang S, Goldie S, et al. Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology 2001;42:182-9.  Back to cited text no. 40  [PUBMED]  [FULLTEXT]  
41.Clarke DM, Baust JM, Van Buskirk RG, Baust JG. Chemo-cryo combination therapy: an adjunctive model for the treatment of prostate cancer. Cryobiology 2001;42:274-85.  Back to cited text no. 41  [PUBMED]  [FULLTEXT]  
42.Forest V, Peoc'h M, Ardiet C, Campos L, Guyotat D, Vergnon JM. In vivo cryochemotherapy of a human lung cancer model. Cryobiology 2005;51:92-101.  Back to cited text no. 42  [PUBMED]  [FULLTEXT]  
43.Mir LM, Rubinsky B. Treatment of cancer with cryochemotherapy. Br J Cancer 2002;86:1658-60.  Back to cited text no. 43  [PUBMED]  [FULLTEXT]  
44.Yuan F, Zhou W, Zhang J, Zhang Z, Zou C, Huang L, et al. Anticancer drugs are synergistic with freezing in induction of apoptosis in HCC cells. Cryobiology 2008;57:60-5.  Back to cited text no. 44  [PUBMED]  [FULLTEXT]  
45.Clarke DM, Robilotto AT, VanBuskirk RG, Baust JG, Gage AA, Baust JM. Targeted induction of apoptosis via TRAIL and cryoablation: a novel strategy for the treatment of prostate cancer. Prostate Cancer Prostatic Dis 2007;10:175-84.  Back to cited text no. 45  [PUBMED]  [FULLTEXT]  
46.Geeslin MG, Swanlund DJ, Bischof JC. A parametric study of freezing injury in BPH1CAFTD-2 human prostate tumor cells. Cryo Letters 2007;28:173-86.  Back to cited text no. 46  [PUBMED]  [FULLTEXT]  
47.Eggermont AM, Schraffordt Koops H, Klausner JM, Kroon BB, Schlag PM, Lienard D, et al. Isolated limb perfusion with tumor necrosis factor and melphalan for limb salvage in 186 patients with locally advanced soft tissue extremity sarcomas. The cumulative multicenter European experience. Ann Surg 1996;224:756-64.  Back to cited text no. 47      
48.Szlosarek PW, Balkwill FR. Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 2003;4:565-73.  Back to cited text no. 48  [PUBMED]  [FULLTEXT]  
49.Goel R, Swanlund D, Coad J, Paciotti GF, Bischof JC. TNF-alpha-based accentuation in cryoinjury--dose, delivery, and response. Mol Cancer Ther 2007;6:2039-47.  Back to cited text no. 49  [PUBMED]  [FULLTEXT]  
50.Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics 2005;25:69-83.  Back to cited text no. 50      
51.Brace CL, van der Weide DW, Lee FT, Laeseke PF, Sampson L. Analysis and experimental validation of a triaxial antenna for microwave tumor ablation. IEEE MTTS Int Microw Symp 2004;3:1437-40.  Back to cited text no. 51  [PUBMED]  [FULLTEXT]  
52.Clark PE, Woodruff RD, Zagoria RJ, Hall MC. Microwave ablation of renal parenchymal tumors before nephrectomy: phase I study. AJR Am J Roentgenol 2007;188:1212-4.  Back to cited text no. 52  [PUBMED]  [FULLTEXT]  
53.Liang P, Wang Y, Zhang D, Yu X, Gao Y, Ni X. Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J Urol 2008;180:844-8.  Back to cited text no. 53  [PUBMED]  [FULLTEXT]  
54.Durick NA, Laeseke PF, Broderick LS, Lee FT Jr, Sampson LA, Frey TM, et al. Microwave ablation with triaxial antennas tuned for lung: results in an in vivo porcine model. Radiology 2008;247:80-7.  Back to cited text no. 54  [PUBMED]  [FULLTEXT]  
55.Laeseke PF, Lee FT Jr, Sampson LA, van der Weide DW, Brace CL. Microwave Ablation versus Radiofrequency Ablation in the Kidney: High-power Triaxial Antennas Create Larger Ablation Zones than Similarly Sized Internally Cooled Electrodes. J Vasc Interv Radiol 2009;20:1224-9.  Back to cited text no. 55  [PUBMED]  [FULLTEXT]  
56.Kohrmann KU, Michel MS, Gaa J, Marlinghaus E, Alken P. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol 2002;167:2397-403.  Back to cited text no. 56      
57.Madersbacher S, Pedevilla M, Vingers L, Susani M, Marberger M. In vivo effect of high-intensity focused ultrasound on human prostate cancer. Cancer Res 1995;55:3346-51.  Back to cited text no. 57  [PUBMED]  [FULLTEXT]  
58.Klatte T, Marberger M. High-intensity focused ultrasound for the treatment of renal masses: current status and future potential. Curr Opin Urol 2009;19:188-91.  Back to cited text no. 58  [PUBMED]  [FULLTEXT]  
59.Marberger M, Schatzl G, Cranston D, Kennedy JE. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int 2005;95:52-5.  Back to cited text no. 59  [PUBMED]    
60.Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, et al. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med Biol 2002;28:535-42.  Back to cited text no. 60  [PUBMED]  [FULLTEXT]  
61.Hacker A, Michel MS, Marlinghaus E, Kohrmann KU, Alken P. Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int 2006;97:779-85.  Back to cited text no. 61      
62.Paterson RF, Barret E, Siqueira TM Jr, Gardner TA, Tavakkoli J, Rao VV, et al. Laparoscopic partial kidney ablation with high intensity focused ultrasound. J Urol 2003;169:347-51.  Back to cited text no. 62  [PUBMED]  [FULLTEXT]  
63.Klingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol 2008;53:810-6.  Back to cited text no. 63  [PUBMED]  [FULLTEXT]  
64.Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One 2007;2:1135.  Back to cited text no. 64      
65.Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005;33:223-31.  Back to cited text no. 65  [PUBMED]  [FULLTEXT]  
66.Sale AJ, Hamilton WA. Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta 1968;163:37-43.  Back to cited text no. 66      
67.Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat 2007;6:287-94.  Back to cited text no. 67  [PUBMED]  [FULLTEXT]  
68.Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 2007;6:295-300.  Back to cited text no. 68  [PUBMED]  [FULLTEXT]  
69.Granot Y, Ivorra A, Maor E, Rubinsky B. In vivo imaging of irreversible electroporation by means of electrical impedance tomography. Phys Med Biol 2009;54:4927-43.  Back to cited text no. 69  [PUBMED]  [FULLTEXT]  
70.Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat 2007;6:307-12.  Back to cited text no. 70  [PUBMED]  [FULLTEXT]  
71.Roberts WW, Hall TL, Ives K, Wolf JS Jr, Fowlkes JB, Cain CA. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol 2006;175:734-8.  Back to cited text no. 71  [PUBMED]  [FULLTEXT]  
72.Kieran K, Hall TL, Parsons JE, Wolf JS Jr, Fowlkes JB, Cain CA, et al. Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol 2007;178:672-6.  Back to cited text no. 72  [PUBMED]  [FULLTEXT]  
73.Hall TL, Kieran K, Ives K, Fowlkes JB, Cain CA, Roberts WW. Histotripsy of rabbit renal tissue in vivo: temporal histologic trends. J Endourol 2007;21:1159-66.  Back to cited text no. 73  [PUBMED]  [FULLTEXT]  
74.Lake AM, Xu Z, Wilkinson JE, Cain CA, Roberts WW. Renal ablation by histotripsy--does it spare the collecting system? J Urol 2008;179:1150-4.  Back to cited text no. 74  [PUBMED]  [FULLTEXT]  
75.Hall TL, Saab B, Hempel CR, Roberts WW. Analysis of Acoustic Access to the Prostate through the Perineum for Non-Invasive Histotripsy Therapy. J Endourol 2009;23:1072-73.  Back to cited text no. 75      

This article has been cited by
1 Electroporation-Based Treatments in Urology
Aleksander Kielbik, Wojciech Szlasa, Jolanta Saczko, Julita Kulbacka
Cancers. 2020; 12(8): 2208
[Pubmed] | [DOI]
2 Oxidative Effects during Irreversible Electroporation of Melanoma Cells—In Vitro Study
Wojciech Szlasa, Aleksander Kielbik, Anna Szewczyk, Nina Rembialkowska, Vitalij Novickij, Mounir Tarek, Jolanta Saczko, Julita Kulbacka
Molecules. 2020; 26(1): 154
[Pubmed] | [DOI]
3 Short- and mid-term effects of irreversible electroporation on normal renal tissue: An animal model
Wendler, J.J. and Porsch, M. and HĂĽhne, S. and Baumunk, D. and Buhtz, P. and Fischbach, F. and Pech, M. and Mahnkopf, D. and Kropf, S. and Roessner, A. and Ricke, J. and Schostak, M. and Liehr, U.-B.
CardioVascular and Interventional Radiology. 2013; 36(2): 512-520
4 Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model
J. J. Wendler,M. Porsch,S. Hühne,D. Baumunk,P. Buhtz,F. Fischbach,M. Pech,D. Mahnkopf,S. Kropf,A. Roessner,J. Ricke,M. Schostak,U.-B. Liehr
CardioVascular and Interventional Radiology. 2013; 36(2): 512
[Pubmed] | [DOI]
5 Therapeutic potential of irreversible electroporation in sarcoma
Yu, Z., Zhang, X., Ren, P., Zhang, M., Qian, J.
Expert Review of Anticancer Therapy 1. 20122; 12(2): 177-184
6 Angiography in the isolated perfused kidney: Radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation
Wendler, J.J., Pech, M., Blaschke, S., Porsch, M., Janitzky, A., Ulrich, M., Dudeck, O., (...), Liehr, U.-B.
CardioVascular and Interventional Radiology. 2012; 35(2): 383-390
7 Therapeutic potential of irreversible electroporation in sarcoma
Zhe Yu,Xudong Zhang,Pengcheng Ren,Minghua Zhang,Jixian Qian
Expert Review of Anticancer Therapy. 2012; 12(2): 177
[Pubmed] | [DOI]
8 Irreversible electroporation: The new generation of local ablation techniques for renal cell carcinoma [Irreversible Elektroporation: Die neue Generation lokaler Ablationsverfahren beim Nierenzellkarzinom]
Liehr, U.-B. and Wendler, J.J. and Blaschke, S. and Porsch, M. and Janitzky, A. and Baumunk, D. and Pech, M. and Fischbach, F. and Schindele, D. and Grube, C. and Ricke, J. and Schostak, M.
Urologe - Ausgabe A. 2012; 51(12): 1728-1734
9 Urinary tract effects after multifocal nonthermal irreversible electroporation of the kidney: Acute and chronic monitoring by magnetic resonance imaging, intravenous urography and urinary cytology
Wendler, J.J. and Pech, M. and Porsch, M. and Janitzky, A. and Fischbach, F. and Buhtz, P. and Vogler, K. and HĂĽhne, S. and Borucki, K. and Strang, C. and Mahnkopf, D. and Ricke, J. and Liehr, U.-B.
CardioVascular and Interventional Radiology. 2012; 35(4): 921-926
10 Irreversible Elektroporation
U.-B. Liehr,J.J. Wendler,S. Blaschke,M. Porsch,A. Janitzky,D. Baumunk,M. Pech,F. Fischbach,D. Schindele,C. Grube,J. Ricke,M. Schostak
Der Urologe. 2012; 51(12): 1728
[Pubmed] | [DOI]
11 Angiography in the Isolated Perfused Kidney: Radiological Evaluation of Vascular Protection in Tissue Ablation by Nonthermal Irreversible Electroporation
Johann Jakob Wendler,Maciej Pech,Simon Blaschke,Markus Porsch,Andreas Janitzky,Matthias Ulrich,Oliver Dudeck,Jens Ricke,Uwe-Bernd Liehr
CardioVascular and Interventional Radiology. 2012; 35(2): 383
[Pubmed] | [DOI]
12 Urinary Tract Effects After Multifocal Nonthermal Irreversible Electroporation of the Kidney: Acute and Chronic Monitoring by Magnetic Resonance Imaging, Intravenous Urography and Urinary Cytology
Johann Jakob Wendler,Maciej Pech,Markus Porsch,Andreas Janitzky,Frank Fischbach,Peter Buhtz,Klaus Vogler,Sarah Hühne,Katrin Borucki,Christof Strang,Dirk Mahnkopf,Jens Ricke,Uwe-Bernd Liehr
CardioVascular and Interventional Radiology. 2012; 35(4): 921
[Pubmed] | [DOI]
13 Percutaneous radiofrequency ablation of the renal tumors - Five years experience with minimally invasive therapy | [Perkutánní radiofrekvenční ablace renálních tumorů - Pět let zkušeností této miniinvazivní terapie]
Hoffmann, P., Dvořák, P., Navrátil, P., Morávek, P., Šafránek, H., Cibereová, P., Raupach, J.
Ceska Radiologie. 2011; 65(2): 124-130


Print this article  Email this article
Previous article Next article


   Next article
   Previous article 
   Table of Contents
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (254 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Radiofrequency A...
    High-Intensity F...
    Irreversible Ele...

 Article Access Statistics
    PDF Downloaded232    
    Comments [Add]    
    Cited by others 13    

Recommend this journal